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Abstract

A new laminate model is presented for the dynamic analysis of laminated band. The bond between any two adjacent

layers is assumed either perfect or imperfect, which is uniformly described by a general spring-layer model. The differential

equations which govern the free vibrations of a band and the associated boundary conditions are derived by Hamilton’s

principle considering bending, shear and normal deformation of all layers. The author used a new iterative process to

successively refine the stress/strain field in the layers. The model includes the effects of transverse shear and rotatory

inertia. The iterative model is used to predict the modal frequencies of simply supported laminated band. Numerical

examples are finally considered and discussed.

r 2006 Published by Elsevier Ltd.
1. Introduction

The predictor–corrector approach appears to have high potential for the accurate prediction of vibration
frequencies, stresses, and deformations in multi-layered composite plates and shells. Accurate determination of
the stress and displacement fields is particularly important for ‘‘stress critical’’ calculation such as delamination.
Noor and Burton [1] presented a predictor–corrector approach for the analysis of composite plates. The
authors used a plate model based on first-order shear deformation theory, coupled with integration of
the equilibrium equations, to refine the estimate of the local stress field through the thickness of the laminate.
The refined stress field was also used to generate improved estimates of the shear correction factors in the first-
order shear deformation model, leading to improved estimates of the plate displacements and natural
frequencies. Vijayakumar and Krishna Murty [2] developed a smeared laminate model for the static analysis of
laminated plates that could, in fact, accurately predict the stress distribution in general laminates. Zapfe and
Lesieutre [3] presented a variation of Vijayakumar and Krishna Murty’s static method for laminated beams.
Note that in these works, the interlaminar bonding is always assumed to be perfect. In practice, however, the
bond may be weakened either in the process of manufacture because of the introduction of small flaws or
during service when microcracks are induced under various conditions. There has been a number of works
related to elastic laminated structures involving the effect of interlaminar bonding imperfections [4,5].

The present research extends the iterative smeared laminate model developed by Zapfe and Lesieutre to the
dynamic analysis of laminated bands. The word band is used to denote a rectangular plate in the plane strain
state. The bond between any two adjacent layers is assumed either perfect or imperfect, which is uniformly
described by a general spring-layer model. Numerical examples are finally considered and discussed.
ee front matter r 2006 Published by Elsevier Ltd.
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2. Basic theory

Consider an n-layered medium as shown in Fig. 1. The z-axis is out-of-plane, with the x and y axes
corresponding to the respective axial and transverse coordinates of the laminate. The x2z plane coincides with
the mid-plane of the band. The laminate is assumed to be infinitely long in the z-direction, with imperfect
bonding between layers. We assume that its two edges are simply supported as described by the end conditions
on the laminate. The quantities related to ith layer are suffixed by a subscript ðiÞ while those related to ith
interface are attached by a subscript ½i�. The laminate is of length L, the total thickness is H, and the ith layer
has thickness hðiÞ. Layer 1 is the bottom layer of the laminate and layer n is the top layer. Layer i is bonded by
the lower interface y½i� and the upper interface y½iþ1� with thickness hðiÞ ¼ y½iþ1� � y½i�; y½i� are signed distances of
the interfaces from the mid-plane. It is obvious that �H=2 ¼ y½1�oy½2�o � � �oy½i�oy½iþ1�o � � �oy½n�oy½nþ1� ¼

H=2. The ith lamina occupies the domain defined by y½i�oyoy½iþ1�, i ¼ 1; . . . ; n (Fig. 2).
Each of the n layers has the constitutive relations

s11ðiÞ ¼ C11ðiÞ�11ðiÞ þ C12ðiÞ�22ðiÞ, (1)

s22ðiÞ ¼ C12ðiÞ�11ðiÞ þ C22ðiÞ�22ðiÞ, (2)

s33ðiÞ ¼ C13ðiÞ�11ðiÞ þ C23ðiÞ�22ðiÞ, (3)

s12ðiÞ ¼ C66ðiÞ�12ðiÞ, (4)

where s11ðiÞ, s22ðiÞ, s33ðiÞ and s12ðiÞ are stresses, �11ðiÞ, �22ðiÞ and �12ðiÞ strains, and C11ðiÞ, C12ðiÞ, C13ðiÞ, C22ðiÞ, C23ðiÞ

and C66ðiÞ elastic stiffnesses.
In the present model, the layerwise displacement field is written in the general form as

tðiÞðx; y; tÞ ¼ uðiÞðx; y; tÞex þ vðiÞðx; y; tÞey

¼ u0ðx; tÞ � y
qv0

qx
þ f ðiÞðyÞu1ðx; tÞ

� �
ex þ ½v0ðx; tÞ þ gðiÞðyÞv1ðx; tÞ�ey, ð5Þ

where u0ðx; tÞ, v0ðx; tÞ denote the axial and transverse displacement of a point ðx; 0Þ on the mid-plane of the
band, respectively. The terms f ðiÞðyÞu1ðx; tÞ and gðiÞðyÞv1ðx; tÞ can be thought to be correction to account for
transverse shear and normal deformation effects, respectively. The functions f ðiÞðyÞ and gðiÞðyÞ represent the
shape of the corrections through the thickness of the band, while u1ðx; tÞ and v1ðx; tÞ determine its distribution
along the length. The solution of a given problem requires the determination of the unknown functions,
u0ðx; tÞ, u1ðx; tÞ, v0ðx; tÞ, v1ðx; tÞ, f ðiÞðyÞ and gðiÞðyÞ. By using the standard expressions

t ¼ uex þ vey; �11 ¼
qu

qx
; �12 ¼

qv

qx
þ

qu

qy
; �22 ¼

qv

qy
,

the strain tensor of each layer can be computed from Eq. (5):

�11ðiÞ ¼
qu0

qx
� y

q2v0

qx2
þ f ðiÞðyÞ

qu1

qx
, (6)
y

x

x=0 x=L

H

v
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Fig. 1. Band configuration.
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Fig. 2. Configuration and coordinate system of an n-layered medium.
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�12ðiÞ ¼
df ðiÞ

dy
u1ðx; tÞ þ gðiÞðyÞ

qv1

qx
, (7)

�22ðiÞ ¼
dgðiÞ

dy
v1ðx; tÞ, (8)

�33ðiÞ ¼ 0. (9)

The strain energy stored in the band has components associated with extension, shear and transverse
normal deformation and is given by

U ¼
1

2

Xn

i¼1

Z L

x¼0

Z y½iþ1�

y½i�

½s11ðiÞ�11ðiÞ þ s22ðiÞ�22ðiÞ þ s12ðiÞ�12ðiÞ�dxdy. (10)

The kinetic energy, which includes components associated with transverse, in-plane and rotary inertia, is given by

T ¼
1

2

Xn

i¼1

Z L

x¼0

Z y½iþ1�

y½i�

rðiÞ
qtðiÞ
qt

� �2

dxdy. (11)

3. General spring-layer model

At an arbitrary interface, say the one between the i � 1th layer and ith layer ðy ¼ y½i�Þ, we adopt the
following general spring-layer model to describe the interfacial imperfection:

s22ðiÞðx; y½i�Þ ¼ s22ði�1Þðx; y½i�Þ ¼ ðvðiÞðx; y½i�Þ � vði�1Þðx; y½i�ÞÞ=Ry½i�, (12)

s12ðiÞðx; y½i�Þ ¼ s12ði�1Þðx; y½i�Þ ¼ ðuðiÞðx; y½i�Þ � uði�1Þðx; y½i�ÞÞ=Rx½i�, (13)

where Ry½i� and Rx½i� are the compliance coefficients of the model. For further discussion, the reader is referred
to Ref. [4]. Eqs. (12) and (13) now take the following form as a result of the substitution of Eq. (5):

s22ðiÞðx; y½i�Þ ¼ s22ði�1Þðx; y½i�Þ ¼ ðgðiÞðy½i�Þ � gði�1Þðy½i�ÞÞv1=Ry½i� ¼ Dg½i�v1=Ry½i�, (14)

s12ðiÞðx; y½i�Þ ¼ s12ði�1Þðx; y½i�Þ ¼ ðf ðiÞðy½i�Þ � f ði�1Þðy½i�ÞÞu1=Rx½i� ¼ Df ½i�u1=Rx½i�. (15)
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In the present study, imperfections opening in tension are not considered to avoid the material penetration
phenomenon [4]. Under these considerations, the work due to the interfacial shear slip is given by

W ¼
1

2

Z L

x¼0

Xn�1
i¼1

s12ðiÞðx; y½i�ÞDu½i� dx ¼
1

2

Z L

x¼0

Xn�1
i¼1

ðDf ½i�Þ
2
ðu1Þ

2=Rx½i� dx. (16)

4. Dynamic simply supported beams

The differential equations of motion and boundary conditions are derived using Hamilton’s principle. The
equations of motion for the four unknown functions, v0ðx; tÞ, v1ðx; tÞ, u0ðx; tÞ and u1ðx; tÞ are:

K1
q2u0

qx2
� K4

q3v0
qx3
þ K5

q2u1

qx2
þ K7

qv1

qx
�M1

q2u0

qt2
þM4

q3v0
qxqt2

�M5
q2u1

qt2
¼ 0, (17)

K11 þ
Xn�1
i¼1

ðDf ½i�Þ
2=Rx½i�

 !
u1 þ K12

qv1

qx
� K3

q2u1

qx2
� K5

q2u0

qx2
þ K6

q3v0
qx3
� K9

qv1

qx

þM3
q2u1

qt2
þM5

q2u0

qt2
�M6

q3v0
qxqt2

¼ 0, ð18Þ

K7
qu0

qx
� K8

q2v0

qx2
þ ðK9 � K12Þ

qu1

qx
þ K10v1 � K13

q2v1
qx2
þM7

q2v0

qt2
þM8

q2v1

qt2
¼ 0, (19)

K2
q4v0
qx4
� K4

q3u0

qx3
� K6

q3u1

qx3
� K2

q2v0
qx2
�M2

q4v0

qx2qt2
þM4

q3u0

qxqt2

þM6
q3u1

qxqt2
þM1

q2v0
qt2
þM7

q2v1
qt2
¼ 0 ð20Þ

and the simply supported boundary conditions, specified at x ¼ 0 and L, are given by

K1
qu0

qx
þ K4

qu1

qx
þ K1v1 ¼ 0, (21)

K4
qu0

qx
� K5

q2v0
qx2
þ K3

qu1

qx
þ K9v1 ¼ 0, (22)

K2
q2v0

qx2
� K5

qu1

qx
� K8v1 ¼ 0, (23)

v0 ¼ v1 ¼ 0. (24)

K1213 and M128 are section stiffness and mass coefficients, given by

K ½1;...;6� ¼
Xn

i¼1

Z y½iþ1�

y½i�

C11ðiÞ½1; y2; f 2
ðiÞðyÞ; y; f ðiÞðyÞ; yf ðiÞðyÞ�dy, (25)

K ½7;8;9� ¼
Xn

i¼1

Z y½iþ1�

y½i�

C12ðiÞ

dgðiÞ

dy
; y

dgðiÞ

dy
; f ðiÞðyÞ

dgðiÞ

dy

� �
dy, (26)

K ½10� ¼
Xn

i¼1

Z y½iþ1�

y½i�

C22ðiÞ

dgðiÞ

dy

� �2

dy, (27)

K ½11;12;13� ¼
Xn

i¼1

Z y½iþ1�

y½i�

C66ðiÞ

dgðiÞ

dy
; y

dgðiÞ

dy
; f ðiÞðyÞ

dgðiÞ

dy

� �
dy, (28)
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M ½1;...;8� ¼
Xn

i¼1

Z y½iþ1�

y½i�

rðiÞ½1; y
2; f 2
ðiÞðyÞ; y; f ðiÞðyÞ; yf ðiÞðyÞ; gðiÞðyÞ; g

2
ðiÞðyÞ�dy. (29)

In the present formulation, the integrals are evaluated numerically using a trapezoidal method.
Functions that satisfy the differential equations and boundary conditions are:

v0ðx; tÞ ¼ V0 sinðknxÞeiont, (30)

v1ðx; tÞ ¼ V1 sinðknxÞeiont, (31)

u0ðx; tÞ ¼ U0 cosðknxÞeiont, (32)

u1ðx; tÞ ¼ U1 cosðknxÞeiont, (33)

where kn ¼ ðnpÞ=L. Substitution of Eqs. (30)–(33) into Eqs. (17)–(20) leads to a matrix equation for the
coefficients ðV0;V 1;U0;U1Þ:

½�o2
n½M� þ ½Y ��fUg ¼ 0; fUg ¼ fV 0;V1;U0;U1g, (34)

Y ¼

k4
nK4 k2

nK8 �k3
nK4 �k3

nK6

k2
nK8 K10 þ k2

nK13 �knK7 knK12 � knK9

�k3
nK4 �knK7 k2

nK1 k2
nK5

�k3
nK6 knK12 � knK9 k2

nK5 K11 þ
Pn�1

i¼1 ðDf ½i�Þ
2=Rx½i� þ k2

nK3

2
666664

3
777775,

M ¼

M1 þ k2
nM2 M7 �knM4 �knM6

M7 M8 0 0

�knM4 0 M4 M5

�knM6 0 M5 M3

2
66664

3
77775.

The eigensolution yields four frequencies and mode shapes for each wavenumber.

5. Improved estimate for correction functions

The equations of motion, skl;k ¼ rq2ul=qt2, applied to the ith layer of the band are now in the form

qs11ðiÞ
qx
þ

qs12ðiÞ
qy
¼ rðiÞ

q2uðiÞ

qt2
, (35)

qs12ðiÞ
qx
þ

qs22ðiÞ
qy
¼ rðiÞ

q2vðiÞ
qt2

. (36)

In the predictor phase, the linear or cubic zig-zag model is used to provide the initial estimate of uðiÞ and vðiÞ
from which the in-plane stresses s11ðiÞ can be found. Using the results from one of the two models, the
transverse shear and normal stress are calculated by integrating the three-dimensional equilibrium equations
(35)–(36) in the thickness direction. In the plane strain state, these are:

s12ðiÞ ¼
Z y

y½i�

rðiÞ
q2uðiÞ

qt2
�

qs11ðiÞ
qx

dy, (37)

s22ðiÞ ¼
Z y

y½i�

rðiÞ
q2vðiÞ
qt2
�

qs12ðiÞ
qx

dy. (38)

In the corrector phase, the transverse shear and the normal stress distribution found earlier are used to
determine the new corrector functions f ðiÞðyÞ and gðiÞðyÞ in the layerwised displacement field.
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Substitution of Eqs. (6)–(8) and (30)–(33) in Eqs. (2) and (4) yield the following set of differential equations
in terms of the new correction functions f ðiÞðyÞ and gðiÞðyÞ:

C11ðiÞV 1

dgðiÞ

dy
� C12ðiÞknU1f ðiÞðyÞ ¼ s22ðiÞ � C12ðiÞð�U0kn þ yk2

nV0Þ, (39)

C66ðiÞU1

df ðiÞ

dy
þ C66ðiÞV 1kngðiÞðyÞ ¼ s12ðiÞ. (40)

The effect of interfacial bonding imperfections can be easily taken into account in the solution of
Eqs. (39)–(40) by using Eq. (15).

6. Results and discussion

Two examples are considered in this section: a three-layer laminate of dissimilar elastic materials and a five-
layer configuration. All laminates are composed of materials termed A and B. Detailed material properties are
listed in Table 1. In all examples to be considered, we take Rx½i� ¼ HR=C66ð1Þ for simplicity. The bonding
imperfections will be measured in terms of the dimensionless sliding parameter R.

Three-layer laminate ðA=B=AÞ: Two layers of material A are bonded to the top and bottom of the elastic
material B. The thicknesses of the A layers are 4 and 5mm with the total laminate thickness 13mm.

Five-layer laminate ðA=B=A=B=AÞ: In order to demonstrate a multi-ply example, the three-layer laminate
was modified such that the shear core was split into two equal thickness (2mm) layers. The core layers were
interspersed among three equal thickness (3mm) layers of the facesheet material A.

In the examples presented below, the span-to-thickness ratios L=H are equal to 5; 10 and 50. For the first
natural frequencies ðn ¼ 1Þ, representative through-thickness distributions of the elastic field variables are
shown for the three-layer laminate. These have been normalized by dividing through by the maximum value
for each field variable. The through-thickness distributions for transverse shear stress s12ðiÞ and transverse
normal stress s22ðiÞ, are shown in Figs. 3 and 4. These figures are associated with perfect bonding between
layers ðR ¼ 0Þ. The resulting frequencies are shown in Table 2. Results are given in terms of natural
frequencies in hertz. Fig. 3 shows the transverse shear stress distribution for length to thickness ratios of
L=H ¼ 50 and L=H ¼ 5. In this figure, the solid line corresponds to the case L=H ¼ 50, with the dashed line
used for L=H ¼ 5. The shear stress is about constant in the core because the shear gradient, from Eq. (35) is
effectively zero. Fig. 4 shows the normal stress distribution for the three layer band with length-to-thickness
ratio of L=H ¼ 50. As expected, the behavior is approximately symmetric about the mid-line for this
geometry. Table 2 shows the effect of the interfacial imperfections on the first natural frequencies for the three-
layer laminate and the five-layer configuration. The span-to-thickness ratios L=H are equal to 5; 10 and 50 and
the imperfections of the two interfaces are identical, i.e. Rx½i� ¼ HR=C66ð1Þ. It can be shown that the results for
the perfect laminate ðR ¼ 0Þ agree well with those obtained by Zapfe and Lesieutre [3]. Thus, the correctness of
algebra as well as program of our method is verified. The interfacial imperfections will lower the natural
frequency because of the reduction of overall stiffness of the laminate. Table 3 shows the effect of the
interfacial imperfections on the second natural frequencies for the three-layer laminate and the five-layer
configuration. Fig. 5 depict the eigenfrequency ratio, i.e., the ratio between the eigenfrequency corresponding
Table 1

Elastic properties of materials

Property A B

C11 (GPa) 8.13 1.075

C12 0.0433 0.0032

C22 6.45 0.75

C33 2.6 0.36

r ðkg=m3Þ 2.7 1.5
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Fig. 3. Transverse shear stress distribution for three layer example: L=H ¼ 50.
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Fig. 4. Transverse normal stress distribution for three layer example: L=H ¼ 50.

Table 2

Variation of the first natural frequency [Hz] with the compliance coefficient

H=L [3] R ¼ 0 Present theory

R ¼ 0 R ¼ 0:1 R ¼ 0:2

A=B=A

50 8:087� 10 8:087� 10 8:084� 10 8:081� 10

10 1:9069� 103 1:9069� 103 1:8893� 103 1:870� 103

5 6:618� 103 6:618� 103 6:383� 103 6:09� 103

A=B=A=B=A

50 7:692� 10 7:692� 10 7:687� 10 7:683� 10

10 1:836� 103 1:836� 103 1:814� 103 1:793� 103

5 6:528� 103 6:528� 103 6:06� 103 5:604� 103

B. Kovács / Journal of Sound and Vibration 300 (2007) 379–386 385
to the value of R considered and that corresponding to R ¼ 0, as a function of the length to thickness ratio, for
selected imperfections R. The interfacial parameter has the values R ¼ 0; 0:2; 0:4; 0:6. These values represent a
decreasingly stiff interphase, i.e. a progressively weakened bonding, with R ¼ 0 corresponding to a perfect
bond. Therefore, increasing R means relaxation of the interfacial bonding strength, and hence reduction in the
overall rigidity of bands. Thus, as expected, increasing the parameter R causes reductions in interface stresses
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Table 3

Variation of the second natural frequency [Hz] with the compliance coefficient

H=L [3] R ¼ 0 Present theory

R ¼ 0 R ¼ 0:1 R ¼ 0:2

A=B=A

50 3:21� 102 3:21� 102 3:204� 102 3:199� 102

10 6:619� 103 6:619� 103 6:3786� 103 6:1206� 103

5 1:936� 104 1:936� 104 1:897� 104 1:862� 104

A=B=A=B=A

50 3:058� 102 3:058� 102 3:051� 102 3:042� 102

10 6:528� 103 6:528� 103 6:114� 103 5:614� 103

5 1:953� 104 1:953� 104 1:88� 104 1:815� 104

4 8 12 16 20

Length-to-thickness ratio

1

0.9

0.8
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re

qu
en

cy
 r
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Fig. 5. Frequency ratio for three layer example: R ¼ 0:6; R ¼ 0:4; R ¼ 0:2.
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which are beneficial, but at the expense of increases of the central deflection. A smeared laminate model has
been presented that can accurately determine the dynamic stress distribution in general laminated bands.
Accurate determination of the stress and displacement fields is particularly important for ‘‘stress critical’’
calculation such as delamination.
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